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Abstract: In this paper, a new H: gas sensor based on FD-SOI PNIN TFET with
Palladium metal gate is proposed through simulation-based study. The transfer
characteristics and the H» gas sensitivities of the proposed sensor at various gas pressure are
studied. FD-SOI PNIN TFET H; sensor exhibits superior sensitivity in contrast with FD-
SOI TFET H: sensor due to the integration of the narrow N' layer at the source side. The
effect of substrate bias on the sensitivity of FD-SOI PNIN TFET H, sensor also has been
studied. It is finally proposed that designers can use the substrate bias to improve the
sensitivity of FD-SOI PNIN TFET H; sensor.

1. Introduction

Hydrogen(Hz) gas presents itself as one of the best alternative energy for clean and renewable
energy source. However, H; is colorless, inflammable and explosive. Therefore, it is important to
develop a effective method to monitor the concentration of Hz[1-3]. MOSFET based gas sensors
has some advantages, such as cheap, easy-made, fast response and recovery, high sensitivity, etc.,
which give them large potential in usage[4-8]. However, with the length down scaling, MOSFETs
suffer from short channel and hot carrier effects. TFETs with steep substhreshold swing were
proposed as a alternative to MOSFETs[9-14]. Its basic structure is a reverse biased P-I-N diode.
When a positive voltage is applied to the gate of the TFET, the energy bands in the P/N- region are
pushed down, and tunneling takes place between the valence band of the P+-source and the
conduction band of the P/N- region. However, due to poor tunneling probability of Silicon, TFETs
have low on current. In addition, its average substhreshold swing needs to be further decrease,
which is important for improve sensitivity sensor.

In this paper, a H> gas sensor based on FD-SOI PNIN TFET with Palladium(Pd) metal gate is
proposed. The sensitivity of the sensor, which is a crucial parameter, has been studied through
numerical simulation. In addition, the effect of substrate bias on the sensitivity of FD-SOI PNIN
TFET H; sensor also has been studied.

2. Device Structure and Simulation Model

Figure 1 shows the schematic view of the FD-SOI PNIN TFET H> sensor. The device consist of
Palladium(Pd) gate, SiO, gate oxide, P* Silicon(Si) source, the narrow N* Silicon(Si) layer, P7/N-
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Silicon(Si) channel, N* Silicon(Si) drain, SiO; buried oxide and Silicon substrate. In order to reduce
ambipolarity effect, the source and the drain are doped asymmetrically in the case of the FD-SOI
PNIN TFET H; sensor. The source doping is 10?° cm™, the narrow N* layer doping is 10! cm™, the
drain doping is 5x10'"® cm?, the P/N- doping is 10!7 cm™, the gate length is 50nm, the narrow N*
layer length is S5nm, the gate dielectric thickness is 3nm and the Si layer thickness is 10nm. Pd has a
very high selectivity towards H» gas, so the Pd gate with a workfunction of 5.1eV is used as the
sensing element of the FD-SOI PNIN TFET H: sensor. The sensor mechanism concludes
dissociation and adsorption of hydrogen molecules at the Pd surface, and then diffusion of some
atomic hydrogen into Pd film, which form dipoles at the Pd/insulator interface changing the gate
work function. The change in work function of Pd metal gate has been altered to the change in
hydrogen gas pressure as reported in ref.[15][16].

The numerical simulation of the FD-SOI PNIN TFET H: sensor has been performed on Silvaco
Atlas. For accurate simulation, the non-local band-to-band tunneling, band-gap narrowing and the
quantum model are applied. All simulations used a very fine mesh across the region where the
tunneling took place. Junctions were ideally abrupt.
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Figure 1: Schematic view of the FD-SOI PNIN TFET H; sensor.
3. Results and Discussions

The transfer characteristics of the FD-SOI TFET and FD-SOI PNIN TFET H: sensor are presented
in Figure 2. FD-SOI PNIN TFET H: sensor shows very steeper subthreshold swing and higher on
current. To further study the operational principle of the FD-SOI TFET and FD-SOI PNIN TFET
sensor, lateral band diagrams at 0.1nm below the SiO2/Si interface of these two structures at higher
H> pressures is shown in Figure 3. As can be seen from this figure, the FD-SOI PNIN TFET H»
sensor shows the steeper band bending. This steeper bending reduces the tunneling path and
enhances the injection efficiency of the carriers, and then increases the drain current.
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Figure 2: The FD-SOI TFET and FD-SOI PNIN TFET H; sensor transfer characteristics. Left axis
is log scale, and right axis shows the same data on a linear scale.

Figure 3: Band diagrams for the FD-SOI TFET and FD-SOI PNIN TFET Ha sensor.

Figure 4(a) and 4(b) show transfer characteristics of FD-SOI PNIN TFET H: sensor for various
H> gas pressure in linear and log scale, respectively. It shows that the drain current of FD-SOI
PNIN TFET H; sensor is changed with H, gas pressures. As the H, gas pressure increases, the
sensor drain current increases. This is caused by the fact that the work function of Pd metal gate has
been changed with the hydrogen gas pressure.
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Figure 4: Transfer characteristics of FD-SOI PNIN TFET H» sensor for various H» gas pressure.

Sensitivity(Sn) of the H> gas sensor is defined as the ratio of change in current after gas
adsorption(Iaser-Ivefore) to the initial current before gas adsorption(Ipefore) and is given by [17].

S _ ]after - Ibefore

! [before (1)
In Figure 5 and Figure 6, sensitivity is showed as a function of the gate voltage for the FD-SOI
TFET and FD-SOI PNIN TFET Ha sensor, respectively. It is observed that maximum sensitivity is

obtained in the subthreshold region. This can be explained by the fact that the highest effect of gate
occurs in the subthreshold region of these two H» sensor.
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Figure 5: Sensitivity of FD-SOI TFET H: sensor for various gate voltage.
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Figure 6: Sensitivity of FD-SOI PNIN TFET Ha> sensor for various gate voltage.

In Figure 7, sensitivity of FD-SOI TFET and FD-SOI PNIN TFET H: sensor are plotted w.r.t Hz
gas pressure. It is observed that for T = 300K, with an increase in H, gas pressure from 101 to 1010
Torr, sensitivity of the FD-SOI PNIN TFET H: sensor is increased by many orders than that of the
FD-SOI TFET H» sensor. This increased sensitivity is caused by the steeper band bending at the
tunneling junction due to the introduction of the narrow N* layer as shown in Figure 3.
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Figure 7: Sensitivity comparison of the FD-SOI TFET and FD-SOI PNIN TFET Ha sensors as a
function of gas pressure.
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Figure 8: Transfer characteristics of FD-SOI PNIN TFET H, sensor for Vs=0,0.5,1V at 10-'° Torr
H:> gas pressure.

Figure 8(a) and 8(b) plot transfer characteristics of the FD-SOI PNIN TFET H: sensor for
different substrate bias (V) conditions. It shows that the drain current of the FD-SOI PNIN TFET
H> sensor is increased with Vsu increased form OV to 1V.

Figure 9 plots the variation of sensor sensitivity with H> gas pressure at given substrate bias Viup
= 0 and Vs = 1. It is observed that the FD-SOI PNIN TFET H: sensor biased with positive Vsu
will be suitable for high sensitivity of operation.
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Figure 9: Sensitivity comparison of FD-SOI PNIN TFET H; sensor for different set of substrate
bias conditions.
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